
Theoret. chim. Acta (Berl.) 10, 377--387 (1968) 

Commentationes 

Ab initio Calculations on Small Hydrides Including 
Electron Correlation 

I. The BeH~ Molecule in Its Ground State 

REINHART AHLRICHS and  WERNER KUTZELNIGG 

Lehrstuhl ffir Theoretische Chemie der Universit/it G6ttingen 

Received January 12, 1968 

A method of calculating directly approximate natural orbitals in the electron pair approximation 
is applied to the ground state of the Bell 2 molecule, which is not known from experiment. The question 
of optimum localization of the electron pairs for asymmetric nuclear configuration receives particular 
attention. The interpair correlation energy is estimated. The physical properties of the molecule are 
predicted and experimental conditions are indicated under which it should be observed. 

Die Methode zur direkten Berechnung gen~iherter nattlrlicher Orbitale in der Elektronenpaar- 
ngherung wird auf den Grundzustand des vom Experiment her unbekannten BeH2-Molektils an- 
gewandt. Die Frage der optimalen Lokalisierung der Elektronenpaare fiir asymmetrische Anordnung 
der Kerne findet besonderes Interesse. Die Interpaar-Korrelationsenergie wird abgesch~itzt. Die 
vorausgesagten physikalischen Eigenschaften dieses Molekiils sind in einer Tabelle zusammen- 
gestellt. Bedingungen, unter denen das Molekiil experimentell beobachtet werden sollte, werden an- 
gegeben. 

La m~thode bas6e sur le calcul direct des orbitales naturelles approch6es est appliqu6e/i I'6tude 
de l'6tat fondamental de la mol6cnle BeH~ qui est inconnu du point de vue exp6rimental. La question 
de la localisation optimale des paires d'61ectrons pour des configurations asymm6triques des noyaux 
est discut6e en d6tail. La corr61ation interpaires est estim6e. On pr6dit les propri6t6s physiques de la 
mol6cule et on indique les conditions qui devraient permettre de l'observer. 

I. Introduction 

G o o d  numer ica l  a p p r o x i m a t i o n s  to the  so lu t ions  of  the  molecu la r  Har t ree -  
F o c k  equa t ions  for sufficiently smal l  molecules  can n o w a d a y s  be ob ta ined  in 
r easonab le  c o m p u t e r  t imes  e.g. wi th  the use of  G a u s s i a n  lobe  basis  funct ions [24]. 
A l t h o u g h  H a r t r e e - F o c k  wave  funct ions  furnish re l iable  theore t ica l  es t imates  for 
several  in teres t ing  proper t ies ,  H a r t r e e - F o c k  energies are  deceivingly  unaccura te  
and  comple te ly  useless for accura te  ca lcu la t ions  of  b ind ing  energies [30], spectra l  
t r ans i t ion  energies and  even po ten t i a l  hypersur faces  for chemical  reac t ions  [6, 27]. 

In  the  H a r t r e e - F o c k  model ,  which  has  the advan t age  of  being c o m p u t a t i o n a l l y  
s imple a n d  close to phys ica l  in tu i t ion ,  one neglects  wha t  is c o m m o n l y  cal led the 
"e lec t ron  cor re la t ion" .  In  a p rev ious  p a p e r  [1]  a m e t h o d  has been  deve lopped  and  
descr ibed  in deta i l  tha t  a l lows to ca lcula te  the  intrapair correlation energy of a tomic  
and  mo lecu l a r  systems in a r a the r  s imple  way. The  m e t h o d  is based  on a direct  
ca lcu la t ion  of  a p p r o x i m a t e  na tu r a l  orbi ta ls .  I t  s tar ts  wi th  a usual  a tomic  or  
mo lecu l a r  H a r t r e e - F o c k  ca lcu la t ion  and  subsequen t  o p t i m u m  loca l iza t ion  of  the  
canon ica l  H a r t r e e - F o c k  orbi ta ls .  I t  has  first been  app l i ed  to the Be and  L i H  g r o u n d  
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s t a t e s  [-1] a n d  i ts  a p p l i c a t i o n  t o  m o r e  c o m p l i c a t e d  s y s t e m s  is s t r a i g h t f o r w a r d .  F o r  

de t a i l s  o f  t h e  m e t h o d  t h e  r e a d e r  is r e f e r r e d  to  Ref. [1 ] .  

T h e  B e l l  2 m o l e c u l e  is - s u r p r i s i n g l y  e n o u g h  - n o t  k n o w n  f r o m  e x p e r i m e n t ,  

w h e r e a s  t h e  B e l l  m o l e c u l e  is [14,  32] .  So l id  B e l l 2  c a n  b e  s y n t h e s i z e d  [5,  33] ,  i t  

d e c o m p o s e s  a t  a b o u t  125 ~ C i n t o  Be  m e t a l  a n d  H2 .  

O n e  is t h e r e f o r e  c h a l l e n g e d  to  f ind  o u t  w h e t h e r  o r  n o t  t h e  B e l l  2 m o l e c u l e  is 

s t ab le ,  u n d e r  w h i c h  e x p e r i m e n t a l  c o n d i t i o n s  i t  s h o u l d  exis t  a n d  w h y  i t  h a s  n o t  

b e e n  o b s e r v e d  so  far.  W e  w e r e  p a r t i c u l a r y  c o n c e r n e d  w i t h  t h e  e q u i l i b r i u m  geo -  

m e t r y ,  t h e  b i n d i n g  ene rgy ,  t h e  h a r m o n i c  fo rce  c o n s t a n t s ,  t h e  n o r m a l  v i b r a t i o n s  

a n d  w i t h  t h e  i n f l u e n c e  o f  e l e c t r o n  c o r r e l a t i o n  o n  t h e s e  p r o p e r t i e s .  

II. Choice of  the Basis Functions 

F o r  p o l y a t o m i c  c a l c u l a t i o n s  a b a s i s  o f  G a u s s i a n  lobe  f u n c t i o n s  

is r a t h e r  c o n v e n i e n t .  (Pi(r) = N e  -"itr-'*)2 (1) 

It has the advantage that all integrals can be programmed easily and be computed quickly. The 
drawback of the incorrect asymptotic behaviour near each nucleus and very far from it is probably 
more serious than has been presumed so far (see e.g. [28]), and one has to be very careful if one wants 
to calculate other properties than the energy (or those that are determined by the energy, like e.g. force 
constants). One can, fortunately come very close to the - within the chosen scheme - best possible 
energy (in the sense of the variation principle), if one chooses carefully the t h and r i values and if one 
uses a sufficiently extended basis set. Experience has shown [9, 18, 26], that it is inappropriate to vary 
all linear parameters independently from each other, but that one gains computer time without loosing 
accuracy, in "contracting" the basis functions i.e. in keeping the ratios between certain basis functions 
fixed, e.g. in choosing these ratios as they are obtained for the free atoms with the same basis set. 

After some pilot calculations we have decided to use the following basis for the treatment of small 
hydrides like LiH, Bell2, BH 3 etc. 

Centra l  A t o m  (Li ,  Be  etc.) 
s-functions. Optimum 9s basis of S. Huzinaga [16], of which the 4 Gaussians with largest t /are 

contracted to one group with their coefficients in the ls-SCF-orbital of the corresponding atom. So 
we are left with 6 s-groups, i.e. 6 variable coefficients. 

p-functions are constructed from a pair of Gaussian lobes with coefficients + 1 and - 1 respectively 
[24] and with the distance 2d between the centers of the lobes; two types of p-functions occur, we used 
for the p~z functions two groups with the t/'s given by Csizmadia et al. [9], i.e. d =  0.5, r/=0.6 and 
d = 1.0, t /= 0.1, whereas only one pcr group is taken, with t /=  0.8, d = 0.7. The d-values are such, that 
no overlap integral between a pair of lobes is bigger than 0.98 [18]. 

H - A t o m  
s-functions. Three groups contracted from Huzinaga's 5s-basis, where the three steepest Gaussians 

are contracted to one group with their coefficients in the Hydrogen Is-orbital. The centers of the 
Gaussians were shifted somewhat to the central atom as is suggested by the H2 calculation of Hoyland 
[15], which improves slightly the energy. 

Table 1. BeH2-calculation with a-NO's only 

a) b) 

Esc F - 15.76t23 - 15.76116 
Ecorr(a ) -- 0.01700 - 0.01679 
t 10.8 3.01 

Eoorr(tr) = cr-correlation energy per bond pair. All energies in atomic units. 
t = total computer time in minutes on an IBM 7094 (model I). 
a) 22 Gaussians uncontracted. 
b) 22 Gaussians contracted to 15 groups as described in section II. 
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p-functions. Two groups with t /= 1.0, d = 0.3 and t /= 0.3, d = 1.0. 
In the middle of  the bond axis an additional Gaussian lobe with r/= 0.2 has been used. 
The effect of contracting the basis is demonstrated by the example of a calculation of Bell2 in 

Table 1. In contracting the Gaussians in the way indicated above one reduces the necessary computer- 
time by a factor of more than three, but the energy is only changed in the sixth decimal place. 

One sees clearly that not to contract the basis would be a waste of computertime (see also Ref. 
[18] and [26]). 

III .  E q u i l i b r i u m  G e o m e t r y  and F o r c e  C o n s t a n t s  

T h e  r e s u l t s  o f  o u r  c a l c u l a t i o n s  o f  t h e  p o t e n t i a l  h y p e r s u r f a c e  o f  t h e  B e l l  2 g r o u n d  

s t a t e  in  t h e  v i c i n i t y  o f  i t s  e q u i l i b r i u m  c o n f i g u r a t i o n  a r e  s u m m a r i z e d  in  T a b l e s  2 to  

4. I n  T a b l e  2 t h e  a d i a b a t i c  e n e r g y  o f  t h e  m o l e c u l e  in  t h e  s y m m e t r i c  l i n e a r  c o n -  

f i g u r a t i o n  is g i v e n  as  f u n c t i o n  o f  t h e  B e - H  d i s t a n c e .  

T h e  m i n i m u m  e n e r g y  Eo,  t h e  e q u i l i b r i u m  d i s t a n c e  r o a n d  t h e  fo rce  c o n s t a n t  k~ 

h a v e  b e e n  o b t a i n e d  b o t h  b y  f i t t i ng  a 2 n d  o r d e r  p o l y n o m i a l  to  3, 4 o r  5 p o i n t s  c lose  

t o  t h e  m i n i m u m  a n d  b y  f i t t i ng  a 4 t h  o r d e r  p o l y n o m i a l  to  al l  t h e  p o i n t s  i n d i c a t e d  

in  t h e  t a b l e .  T h e  r e s u l t s  a g r e e  u p  to  t h e  l a s t  f igu res  i n d i c a t e d  in  t h e  t ab l e s .  I n  

Table 2. Symmetric-stretchin9 potential curve of  Bell2 in different approximations 

r (in a.u.) ~ 2.2 2.4 2.45 2.5 2.55 2.6 2.65 2.8 

Esc v 15.74068 15.75964 15.76146 15.76239 15~76261 15.76204 15.76073 15.75455 
E,or~ ~ 0.03042 0.03146 0.03184 0.03224 0.03262 0.03322 0.03376 0.03568 
Ecor~(~ ) 0,02588 0.02500 0.02475 0.02448 0.02430 0.02392 0.02362 0.02266 
E .... 0,05630 0.05646 0.05659 0.05672 0.05692 0.05714 0.05738 0.05834 
E = E s c  F + E  .... 15.79698 15.81610 15.81805 15.81911 15.81953 15.81918 15.81811 15.81289 

Equilibrium distances and force constants 

r o k~ E o g~ 

SCF-approximation 2.54 a.u. 0.075 a.u. 15.76261 -0.035 a.u. 
SCF-approximation + a-corr. 2.57 a.u. 0.068 a.u. 15.79531 -0.036 a.u. 
SCF-approximation + (a + n)corr. 2.55 a.u. 0.075 a.u. 15.81953 -0.037 a.u. 

a r = Bell-bond distance. 

Table 3. Bell 2 anti-symmetric deformation 

qa (in a.u.) 0.0 +0.1 +0.2 

0 E SCF -- E SCF 0.0 0.00037 0.00154 
Eco~r(a ) 0.03262 0.03233 0.03278 
Ecorr(Tz ) 0.02430 0.02434 0.02438 
Ecorr 0.05692 0.05667 0.05716 

Escv+ Ec~ 1 
_ EscF _ Er r ~ 0.0 0.00062 0.00130 

floor 0.7071 0.78 0.84 

Force constants (ka) 

SCF-approximation 0.078 a.u. 
SCF-approximation + tr .... 0.070 a.u. 
SCF-approximation + (a + n) .... 0.067 a.u. 

26* 
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agreement with what we have found for the LiH molecule [1] (but in contrast to 
Das'  [10] results for Li2) r o and k, are rather well predicted on the Hartree-Fock 
level. Inclusion of a-correlation (mainly "left-right" correlation; as to a more 
precise definition see Ref. [1]) increases ro and decreases k, slightly, whereas 
inclusion of both a- and n-correlation leaves ro and k~ almost unchanged. A 
calculation that includes o--correlation only accounts for the correct asymptotic 
behaviour at large internuclear separation, but yields too large equilibrium 

Table 4. Bell2 bending deformation 

qb (in a.u.) 0.0 0.1 0.2 0.6 

Esc v - Es~ 0.0 0.00004 0.00017 0.00153 
Ecom,, ) 0.04450 0.04448 0.04450 0.04459 
Eoom,,, ) 0.01224 0.01224 0.01224 0.01219 
E .... 0.05674 0.05672 0.05674 0.05678 

Esc F + E .... 0.0 0.00006 0.00017 0.00149 
o o 

- -  E s c  F - -  Ecorr 

Force constants (kb) 

SCF approximation 
SCF approximation + aoorr 
SCF approximation + (a + n) .... 

0.0085 a.u. 
0.0085 a.u. 
0.0085 a.u. 

distances and too small force constants. For  small distances the n-correlation 
increases because one approaches "near degeneracy" in the vicinity of the united 
a tom limit. 

That  the equilibrium configuration is really the linear one, in accordance with 
Walsh's rules [-31] and in agreement with other authors '  predictions [-4, 22, 23] 
can be seen from Tables 3 and 4 which show the variation of the energy as function 
of the two other normal  coordinates. 

In terms of the "inner coordinates" A r 1, A r 2 and A e the normal  coordinates 
q~ (symmetric stretching), qa (antisymmetric stretching) and qb (bending) can be 
expressed as q~ = A r I + A r 2 , q,  = A r I - -  A r2,  qb = ro ' A ~ .  (2) 
There are two equivalent expansions for the electronic energies V. 

2 V = 2E o + k~q z + koq ~ + kb(qg + @ )  
+ gsq~ + 2 (3) g~,,qaq~ + g~b(q 2 + q2,)q~ + (9(q4) 

2 V = 2E o + f~ (A r 2 + A r~) + 2f~/(A r I A r2) 
(4) 

+ 2 f~r~(a e) 2 + (9(A 3). 

We have calculated directly k~, k,, kb and g~. We do not think that the accuracy is 
sufficient for the calculation of fourth-order force constants, which are necessary 
if one wants to obtain the anharmonic corrections to the normal  vibrations. We 
limit ourselves therefore to indicating the "harmonic" vibration frequencies 
(Table 6). 

The force constants corresponding to the expansion (4) are also given in 
Table 6. 

It is worth noting that the equilibrium distances and force constants of Bell  z 
and Bell  agree almost perfectly. For  Bell  the values r o = 1.343 A = 2.538 a.u., 
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f r = 2 . 2 6 m d y n / ~  have been observed [,,14,32]. The numerical value of f , , ,  
actually even its sign, depends very much on correlation. On the Hartree-Fock 
level it is obtained as fi~, = - 0.04 mdyn/A, a calculation including a-correlation 
does not effect this value, whereas the inclusion of the ~-correlation changes it to 
+0.12mdyn//~.  It may be that inclusion of the "interpair-correlation energy" 
leads to another substantial change, although we do not think so (see also section IV 
as to the role of the opt imum localization for non-symmetric nuclear configu- 
ration). 

IV. The Problem of Optimum Localization of the Pairs 

As we have outlined previously [,1] our separated-electron-pair approach is a 
valid and a good approximation if two conditions are fulfilled. 

a) The occupation number of the weakly occupied natural orbitals (or rather 
pseudo-natural orbitals [,11]) have to be small compared to those of the strongly 
occupied ones, which can to first order be identified with the Hartree-Fock 
orbitals. 

b) It has to be possible to transform the "occupied" canonical Hartree-Fock 
orbitals by a unitary transformation to a set of orbitals that are essentially localized 
in different regions of space. 

If condition a) is fulfilled the sum of the individual pair correlation energies 
differs by much less than 1% from the exact intrapair correlation energy, a fact 
which simplifies the calculation very much, but still allows us to regard the energies 
obtained, as upper bounds to the true ones. For  the ground state of the Be atom 
due to the 2s/2p near degeneracy condition a) is actually not fulfilled and this is 
why the sum of the K and L pair energies cannot without critizism be interpreted as 
the true intra-pair correlation energy [-1]. In the Bell  2 molecule however (like in 
LiH) we are so far from this "near degeneracy" that condition a) is excellently 
fulfilled. 

Condition b) guarantees that the inter-pair correlation energy is much smaller 
than the intra-pair one, so that the latter is a good approximation to the total 
correlation energy, provided that the number of interpair terms is of the same order 
of magnitude as that of intra-pair terms. 

There is strong evidence that the unitary transformation which performs the 
optimum localization does not mix K and L shell orbitals to an appreciable 
extent [1] and that - for the symmetric molecule - the two equivalent orbitals 
[20] Zl, X2 to be constructed from the canonical valence shell MO's q00 and q0 u 

1 1 

1 1 (5) 

are better localized (independent of the criterion of "best" localization [7, 12J) 
than any other unitary linear combinations of ~o 0 and ~o,. 

We therefore renounced on mixing K and L shell orbitals and on finding the 
respective optimum mixing coefficient by the criterion of maximum intra-pair 
correlation energy. Our experience from the LiH case let us conclude that by such 
a mixing one would not get an improvement of more than 1% of the total intra- 
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pair correlation energy. On the other hand we did vary the mixing coefficient 
between ~0 o and q~, and we found in fact the maximum of intra-pair correlation 
energy for the equivalent orbitals. 

The situation becomes more complicated if the two Bell-bond distances are 
not equal. Then the labels g, u loose their meaning and equivalent orbitals are no 
longer defined. Rather than to try any of the localization criteria [-7, 12] known 
from the literature, we applied ours of maximum intra-pair  correlation energy, 
i.e. we performed the calculation for different unitary transformations 

Z1 = a~o~l + bcpv2 a 2 q- b 2 --- 1 (6) 
Z2 = bcPv2 - a~0vl �9 

and interpolated the optimum values of a and b. One point of Table 2 took 10 rain 
on a IBM 7094 model 1, one point of Table 3 about 50 rain. (About 5 different 
choices of a were necessary to find the optimum localizations for each qa(r 0), 
the pseudo-NO's of two different pairs had to be calculated, the time-consuming 
Hartree-Fock-part of the calculation had, however, only to be performed once.) 
The dependence of the intra-pair correlation energy on the coefficient a can be 
seen for a typical point in Table 5. 

Table 5. Dependence of the total valence correlation energy on the localization parameter b for an 
asymmetric nuclear configuration (% = 0.2 a.u.) 

b 0.6 0.707107 0.8 0.866025 0.9 1.0 boot 

Eeorr(O- ) 0.0266 0.3090 0.0333 0.0336 0.0329 0.0195 0.8429 
Ecorr(n) 0.0195 0.0232 0.0253 0.0254 0.0248 0.0132 
E .... 0.0461 0.0541 0.0586 0.0590 0.0577 0.0328 0.8413 

It is an open question whether or not the goodness of the independent electron 
pair approach based on optimum localization remains the same along the anti- 
symmetric - stretching potential curve, in other words whether the "interpair" - 
correlation energy remains constant, if one defines the "intrapair" contribution 
with respect to optimum localized pairs. 

For  the potential curve of the bending vibration equivalent orbitals are always 
defined and there is no problem how to choose the best localization. The following 
point merits attention. The terms a and z~ orbital, and so a and n correlation, have 
a conceptually different meaning for linear and for planar molecules. In order to 
avoid confusion we have designated by a' and a" what is often called ~r and n in the 
planar (bent) configuration. In the limit of the linear molecule the a' correlation 
energy converges towards the o-- plus half of the n-correlation energy. 

For  the bent configuration p:orbi ta ls  had to be taken into account even in the 
Hartree-Fock part of the correlation. This is why the necessary amount of com- 
puter time was 16 rather than 10 min. 

V. The Correlation Energy and the Binding Energy of Bell  2 
For  the equilibrium geometry a more refined calculation, using a larger basis 

set was carried out. The basis was augmented by one p-group in the bond direction 
with q = 2.0 and d = 0.15, the two Gaussians with q = 0.8 were not  contracted to 
a px-group and three p n-groups at the H atoms (with 17 = 2.0;0.5;0.15) were used 
rather than two. 
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The result of this calculation was: 

E s c  v = -15.76821 a.u.; E .... = -0.02963 a.u. per valence pair .  

F rom our previous calculation on diatomics, where very good H F  energies are 
known, we can estimate that our H F  energy is about  0.005 a.u. ~ 3 kcal/mol above 
the exact Har t ree-Fock energy. This is in perfect agreement with the quite reliable 
Har t ree-Fock energy of -15.7730 a.u. obtained recently by Goldberg and Ritter 
[13], who used the McLean-Yoshimine SCF-program for linear molecules. That  
SCF-program, although being superior to Gaussian SCF-programs for linear 
molecules, does not allow the calculation of bent configurations. 

We have not tried to calculate the K shell correlation energy of the Bell2 
molecule. We are however allowed to conclude from our LiH calculation [11 that 
the K shell correlation energy is independent of the molecular geometry and prac- 
tically the same as in the Be a tom i.e. equal to -0 .0417 a.u. [1]. If we add the 
correlation energy for the three pairs to the Har t ree-Fock energy we obtain 
E = -15.8692, which has to be regarded as an upper bound to the true energy. 
Our  result for LiH obtained in the same way, E = - 8 . 0 5 8 6  a.u., differs by 

-0 .012  a.u. from the experimental value ( -8 .0707 a.u.) [1]. 
There is evidence ([1, 21] t) that the interpair correlation energy between a 

K-shell and a L-shell pair is generally about  -0 .006  a.u., so that we can conclude 
that of the -0 .012  a.u. by which our value for the LiH ground state differs from 
its experimental counterpart  about  one half is due to the neglect of the interpair 
correlation and the other half due to the limitation of the basis (and the limitation 
to o-- and ~-orbitals). In order to estimate the correct ground state energy of Bell  2 we 
can assume that the relative error due to the limitation of the basis is about  the same 
as in our LiH calculation, i.e. that the best value obtainable by a calculation that 
accounts for intrapair correlation only is close to - 1 5 . 8 6 9 - 0 . 0 1 2 = - 1 5 . 8 8 1 ,  
which corresponds to a total intra-pair-eorrelation eneroy of -15.881 + 15.773 
= -0 .108  a.u. ,-~ - 7 0  kcal/mol. This result has then to be corrected for the inter- 
pair correlation energy, which can in this context be simply added [29]. Two 
contributions between the K pair and either valence (V) pair amount  to about  
0.006 a.u. each, whereas the interpair correlation energy between the two valence 
pairs is hard to guess. It is probably  higher than a typical K - L  interpair cor- 
relation energy (~0.006 a.u.), but lower than the interpair correlation energy 
between two valence pairs in the methane molecule [2] (~0.018 a.u.). A crude 
guess is therefore ~ 0.013 _+ 0.005 a.u. which leads to the estimate: 

E = -15.906 +0.01 a.u. 

for the total non-relativistic energy of the Bell  2 molecule (where the uncertainty 
is probably rather less than 0.01 a.u.) and E .... = -0 .133  • 0.01 a.u. for the overall 
correlation energy 1. 

1 The importance of interpair correlation contributions has probably first been stressed by 
Sinano~lu and coworkers IV. McKoy and O. Sinano~lu: J. chem. Physics 41, 2689 (1964); O. Sina- 
no~lu: J. chem. Physics 33, 1212 (1960), 36, 706, 3198 (1962), Proc. Roy. Soc. (London) A 260, 379 
(1962); O. Sinano~lu and E. M. Mortenson: J. chem. Physics 34, 1078 (1961)], and has also been 
observed by other authors IF. Bender and E. R. Davidson: J. physic. Chem. 70, 2675 (1966), J. chem. 
Physics 46, 402, 3313 (1967); F. Grimaldi: J. chem. Physics 43, 559 (1965) and communication at the 
NATO summer school on electron correlation, Frascati 1967]. We thank the referee for drawing our 
attention to these papers. 
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F r o m  the extrapolated total energy the binding energy given in Table 6 is ob- 
tained. The sum of the dissociation energies differs (except for sign) f rom the bind- 
ing energy by account ing  for the zero-point-vibrat ions.  The experimental dissocia- 
t ion energy of  Bel l  (the second dissociation energy of  Bell2) is rather uncertain. 
Experimental  values between 2.2 e.V. and 2.5 e.V. can be found in the literature 
[14, 17, 25, 34]. Al though the lowest of  these [14] seems to be the most  reliable, 
since it gives (together with the Har t ree -Fock  energy of  Cade and H u o  [8]) the 

Table 6. Predicted physical properties of the Bell 2 molecule in its ground state X =1 1Sg + 

Equilibrium distance r ~ (Be-H) 2.55 _+ 0.02 a.u. = 1.35 +_ 0.01 A 
Minimum adiabatic energy E - 15.906 _+ 0.010 a.u. 
Binding energy E b = -(D~ 1~ + D~ 2)) - 150 _+ 5 kcal/mol 

Dissoziation energies 
first bond D~0 ~) 89 _+ kcal/mol 
second bond D~0 ~) 53 _+ 7 kcal/mol 

FI( 1 ) d_ /3(2)  sum ~o - ~o 142 • 5 kcal/mol 

Lowest ionisation potential (from Koopmanns' theorem) 
I~ 12.1 eV 

Harmonic force constants 
f, 2.230 mdyn/A f,r' 
f ,  0.134 mdyn/• 

Harmonic vibration frequencies 
ro e 1997 cm -~ 
% 2078 cm- 1 
o9 b 738 cm- i 

Zero-point vibration energy ~ 8 kcal/mol 

0.120 mdyn/A 

most  plausible value for the correlat ion energy of  Bel l  (namely - 0 . 0 8 9  a.u.) we 
have used Gaydon ' s  estimate [17] of  2.3 ___ 0.3 e.V. 

It is intuitively quite unders tandable  that  the second hydrogen is stronger 
bond  than the first one, because the Be a tom has to be p romoted  to the same 
"valence state" irrespective of  whether  it is going to use one or  two valences. The 
bond  length and the stretching force constants  are about  the same irrespective 
of  whether one or  two hydrogens  are bound  is unders tandable  in terms of  the 
same argument.  

VI. On the Thermodynamic Stability of Be l l  2 
Q u a n t u m  chemistry has now reached a stage where it is possible to predict the 

existence and the physical properties of  (small) unknown  molecules by ab initio 

calculations. 
Bel l  2 is a very stable molecule with respect to a dissociation into Bel l  + H, 

Be + 2H, Bel l  + �89 or  Be + H 2 (see Fig. 1). Its stability relative to metallic Be 
a n d  solid Bel l  2 can be discussed in terms of  its the rmodynamic  functions which 
are easily calculable f rom our  q u a n t u m  chemical  results. Unfor tunate ly  a lmost  
nothing is known  about  solid Bel l  2, but  f rom the fact that  it is stable (in absence 
of  moisture) at r o o m  temperature  and that  it decomposes  into the elements at 
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about  125 ~ C 1-33] one can conclude that the free energy of solid Bel l  2 at 400 ~ K 
is about  that of solid Be plus that o f H  2 of 1 atm. pressure at the same temperature. 
Neglecting differences in the specific heat of solid Be and solid BeHz one obtains an 
estimate of - 1 0 k c a l / m o l .  for AF at 0 ~  for the reaction Be (solid) + H2 (gas) 

Bell  2 (solid) which was used in Fig. 1 and which is supposed not to be in error by 
more than a few kcal/moles. 

Bell(g) + �89 2 

- 3 9  
Be(g) + H 2 , BeH2(g ) 

-77  [ 1 -48  

Be(s) + H z ~ BeH2(s ) 
- 1 0  

Fig. 1. A H values at 0 ~ K (in kcal/mol) for the system Be + H 2. Most of the numbers are uncertain by 
about _+ 5 kcal/mol, g: gas, s: solid 

Simple thermodynamic arguments show that at room temperature the vapor 
pressure of Bell  2 in equilibrium with solid Be is no more than 10-27 _+ 5 times the 
H2 pressure. Even at the decomposit ion temperature of solid Bell  a the Bell  2 
vapor  pressure is so small (10 -t8-+3 atm) that one cannot hope to obtain Bell  2 
molecules by heating solid Bell2. One can, however, estimate that at 1000 ~ K in 
equilibrium with solid Be and H2 of 1 a tm the partial pressures of Bell  2 and Bell  
should be 10 - 7 _+ 2 a tm and 10-12 _+ 2 a tm respectively. At much higher tempera- 
tures and small H 2 pressures Bell  is favoured thermodynamically relative to 
Bell  2. This makes partially plausible why Bell  (and not Bell2) has been observed 
in gas discharge of H 2 with a Be cathode [32]. 

If one wants to observe Bell  2 one should let react Be metal with H 2 of at least 
1 a tm at a temperature of 1000 to 1500 ~ K. Bell  2 could be identified through its 
IR spectrum although this may be experimentally rather difficult. In what con- 
cerns the UV spectrum of Bell  2 one has to be aware that the first allowed electronic 
transition to a 1/i state is to be expected in the far UV (at about  150rap or less) 
and that the excited state is bent [31] and has longer B e - H  distances so that the 
transition is almost Franck-Condon forbidden. That  Bell2 has not been observed 
so far, may come from the fact it is not easily detectable - in contrast to Bell. 

VII. Conclusions 
It  seems that ab initio calculations that account for electron correlation are 

able to give informations about  the physical properties of molecules which, for 
one reason or another, cannot  be observed experimentally. 

The purely methodological  aspect were not so much stressed in this paper. 
It  should be emphasized, however, that the uncertainties in our predictions are 
essentially based on the fact that the interpair-correlation corrections have only 
been estimated rather than calculated. We are now planning to program the 
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calculation of interpair-correlation energies as well and to study inhowfar they 
can be simply added to the intrapair energy. 

Our calculated upper bound for the energy of Bel l  2 differs by about 
0.037 ___ 0.01 a.u. ~ 17 + 6 kcal/mol from the extrapolated total energy. Although 
this discrepancy is still unsatisfactory one should not forget that the Hartree-Fock 
energy [13] is 0.133 +0.01 a.u. ~84__ 6 kcal above the extrapolated value and 
that the minimum basis set MO-LCAO-SCF value [19] is even 0.183 a.u. ~ 114 _ 6 
off the probably correct value. 

The task of calculating the physical properties of a molecule like Bel l  2 is not 
completely solved if one indicates typical ground state properties and the thermo- 
dynamic functions. One should also predict the UV spectrum (which amounts to 
calculate the lowest excited state) and predict, whether the Bel l  + is stable (and can 
therefore be observed in a mass spectrometer). Insofar our investigation is still 
incomplete. 

An interesting problem is finally to understand the high cohesion energy of 
solid Bel l  2 and to study whether Be l l  2 has a tendency to polymerize or oligo- 
merize via H bonds, as has been supposed [33]. Work on this question is in 
progress. 
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